The eskolemization of universal quantifiers

نویسنده

  • Rosalie Iemhoff
چکیده

This paper is a sequel to the papers [4, 6] in which an alternative skolemization method called ekolemization was introduced that, when applied to the strong existential quantifiers in a formula, is sound and complete for constructive theories. Based on that method an analogue of Herbrand’s theorem was proved to hold as well. In this paper we extend the method to universal quantifiers and show that for theories satisfying the witness property the method is sound and complete for all formulas. We prove a Herbrand theorem and, as an example, apply the method to several constructive theories. We show that for the theories with a decidable quantifier-free fragment, also the strong existential quantifier fragment is decidable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eskolemization in Intuitionistic Logic

In [2] an alternative skolemization method called eskolemization was introduced that is sound and complete for existence logic with respect to existential quantifiers. Existence logic is a conservative extension of intuitionistic logic by an existence predicate. Therefore eskolemization provides a skolemization method for intuitionistic logic as well. All proofs in [2] were semantical. In this ...

متن کامل

On residuated lattices with universal quantifiers

We consider properties of residuated lattices with universal quantifier and show that, for a residuated lattice $X$, $(X, forall)$ is a residuated lattice with a quantifier if and only if there is an $m$-relatively complete substructure of $X$. We also show that, for a strong residuated lattice $X$, $bigcap {P_{lambda} ,|,P_{lambda} {rm is an} m{rm -filter} } = {1}$ and hence that any strong re...

متن کامل

Characterizing Integers among Rational Numbers with a Universal-existential Formula

We prove that Z in definable in Q by a formula with 2 universal quantifiers followed by 7 existential quantifiers. It follows that there is no algorithm for deciding, given an algebraic family of Q-morphisms, whether there exists one that is surjective on rational points. We also give a formula, again with universal quantifiers followed by existential quantifiers, that in any number field defin...

متن کامل

CHARACTERIZING INTEGERS AMONG RATIONAL NUMBERS WITH A UNIVERSAL-EXISTENTIAL FORMULA By BJORN POONEN

We prove that Z in definable in Q by a formula with two universal quantifiers followed by seven existential quantifiers. It follows that there is no algorithm for deciding, given an algebraic family of Q-morphisms, whether there exists one that is surjective on rational points. We also give a formula, again with universal quantifiers followed by existential quantifiers, that in any number field...

متن کامل

COMBINING FUZZY QUANTIFIERS AND NEAT OPERATORS FOR SOFT COMPUTING

This paper will introduce a new method to obtain the order weightsof the Ordered Weighted Averaging (OWA) operator. We will first show therelation between fuzzy quantifiers and neat OWA operators and then offer anew combination of them. Fuzzy quantifiers are applied for soft computingin modeling the optimism degree of the decision maker. In using neat operators,the ordering of the inputs is not...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ann. Pure Appl. Logic

دوره 162  شماره 

صفحات  -

تاریخ انتشار 2010